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Abstract

This work presents a novel physics-informed deep learning based super-resolution
framework to reconstruct high-resolution deformation fields from low-resolution coun-
terparts, obtained from coarse mesh simulations or experiments. We leverage the gov-
erning equations and boundary conditions of the physical system to train the model
without using any high-resolution labeled data. The proposed approach is applied to
obtain the super-resolved deformation fields from the low-resolution stress and displace-
ment fields obtained by running simulations on a coarse mesh for a body undergoing
linear elastic deformation. We demonstrate that the super-resolved fields match the
accuracy of an advanced numerical solver running at 400 times the coarse mesh res-
olution, while simultaneously satisfying the governing laws. A brief evaluation study
comparing the performance of two deep learning based super-resolution architectures
is also presented.

1 Introduction

Image super-resolution (SR) is an active area of research in the field of computer science
which aims at recovering high-resolution (HR) image from a low-resolution (LR) image.
In this work, we focus on exploring the concept of image super-resolution to develop a
physics-informed Deep Learning (DL) model to reconstruct HR deformation fields (stress and
displacements) from LR fields without requiring any HR labeled data. The LR data could
be obtained by running simulations on a coarse mesh or from experiments such as digital
image correlation. We also present a brief study that compares two DL architectures and
evaluate their suitability for developing physics-informed super-resolution framework. The
overall schematic of the proposed physics-informed strategy for super resolution is depicted
in Fig. 1. The use of such physics-informed SR framework will allow researchers to solve
computationally expensive simulations much faster and enable them to increase accuracy
without additional costs.

Recently, several researchers have explored the possibility of using deep learning based
super-resolution to reconstruct HR fluid flow fields from LR (possibly noisy) data. The
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Figure 1: Schematic of the super-resolution framework.

data-driven approaches for reconstructing HR flow field [FFT21, FFT19, DHLK19, BGL*19,
XFCT18] relies on the availability of large amount of HR labeled data. Moreover, the HR
output obtained from data-driven approaches may fail to satisfy physics-based constraints
because of the lack of any embedded physical constraints in the model itself. Several studies
have demonstrated the merits of developing physics-informed DL models for SR in the fluid
mechanics community [EAK'20, SWB*20, SW20, GSW21]. However, to the best of author’s
knowledge, developing an effective physics-informed DL model for super-resolution in label-
scarce or label-free scenarios for solid mechanics problems has not yet been explored.

The layout of the rest of this paper is as follows: In Sec. 2, a brief review of the governing
equations for modeling elastic deformation in solids is presented. Model architectures and
construction of loss function are discussed in Secs. 3 and 4, respectively. Sec 5 presents the
findings for the evaluation of the proposed SR-framework after briefly discussing simulation

setup and data collection strategy. Conclusions and future opportunities are presented in
Sec. 6.
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Figure 2: a) Schematic showing the geometry and the applied boundary conditions. b)
Coarse triangular mesh with 41 nodes. c¢) 128 x 128 fine mesh with 16384 nodes. The LR
data is refined by 400 times.



2 Governing Equations for Elasticity

The governing equations for elasticity problems, in the absence of inertial forces, are given
as follows:

Divo+ B =0, in {2,
1
o=C:e, ezﬁ(Vu—l—(Vu)T), (1)

on =1t, on Iy and u = uy. on Of2p.

In the above, o and € denotes the stress and the (linearized) strain in the material. w and
B denotes the displacement vector and body force vector (per unit volume), respectively. (2
denotes the volumetric domain, Div denotes the divergence operator, and C is the fourth
order elasticity tensor. t,. and w. denote the known traction and displacement vectors on
the (non-overlapping) parts of the boundary 92y and 0f2p, respectively. n denotes the
unit outward normal on the external boundary 0f2. Under two-dimensional plane-strain
conditions, the unknown components for displacement vector and stress tensor are (uy, u,)
and (044, Oyy, Ouy), respectively.

3 Model Architectures

We train physics-informed DL framework to approximate the mapping ¥ : 75 — THE to
reconstruct the HR deformation field (Z#%) from the LR (Z*%#) data. The two architectures
evaluated in this study are i) Residual Dense Network (RDN) [ZTK™*18], and ii) FSRCNN
[DLT16]. In this work, we use the following hyper-parameters for the RDN model: number
of residual blocks: 2, number of layers in each residual block: 4, growth rate: 32, and number
of features: 32. For the FSRCNN model, we use the following hyper-parameters: number
of layers: 8, and LR feature dimensions d = 128 and s = 64. These hyper-parameters also
ensure that both the models have (almost) same number of trainable parameters. The inputs
to both the models consist of LR data {uy, uy, 04z, 0yy, 04y } obtained by running simulations
on a coarse mesh (see Fig. 2) and then evaluating the solution (using underlying interpolating
basis functions) on a 32 x 32 structured grid. The outputs of these models correspond to
the HR data on a 128 x 128 structured grid as shown in Figure 2.

4 Constructing the Loss Function

For the unsupervised model, wherein the HR labeled data is not needed, the total network
loss L is obtained only from the physics-based constraints corresponding to the governing
equations and boundary conditions. For the mixed-variable formulation (displacement vector



u and stress tensor o as outputs), the total loss function £ is constructed as follows

L=\ ||V ||+ ]|lo—C:¢€
—— —_———
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+ A3 [Ju — upe||ogy + M [lom — tuel oy,
—_—— ~

~
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where ||(-)|| denotes the L' norm of the quantity (-). L' norm is chosen to make the model
robust to noise and outliers in the LR data. The scalar constants Ay, Ay, A3, and A4 are
chosen to nondimensionalize the individual loss components. In this work, we choose A\; =
%, Ay = i, A3 = IQJ—?), and \y = %, where p and Uy represent the shear modulus and the
characteristic displacement in the body, respectively. H denotes the height of the body.
Relatively larger magnitudes of A3 and A4 are chosen to assign more weight to the boundary

conditions.

Two neural networks based on RDN and FSRCNN architectures are implemented and
trained using PyTorch framework [PGM™19]. The network’s total loss £ is minimized by
iteratively updating trainable parameters by using Adam optimizer [KB15] for around 2000
epochs with learning rate n = 107%. We also use ReduceLROnPlateau scheduler with the
patience = 30. L-BFGS algorithm [ZBLN97] is then used for local fine-tuning of the solution
until loss converges. The training is performed using NVIDIA Quadro RTX 8000 graphics
card and takes around 8 and 14 hours for RDN and FSRCNN models, respectively. The
source code and the dataset used in this research can be found at https://github.com/s
airajat/SR_LE upon acceptance of this paper.

5 Results & Discussion

In what follows, we demonstrate the effectiveness of SR framework in reconstructing HR
displacement and stress fields from LR input data for linear elastic simulations — which
we believe is a first step in demonstrating the strength of machine-learned super-resolution
techniques in solid mechanics.

We apply the framework to resolve the stress and displacement fields within an isotropic
body undergoing linear elastic deformation. The schematic of the body along with the
boundary conditions is shown in Figure 2. The body is assumed to deform quasi-statically
under plane strain conditions with the body force vector B given as

B, = X [A7? cos(2mz) sin(my) — 7 cos(mz)Qy®
+ p [977 cos(2mz) sin(my) — 7 cos(mx)Qy?]
B, = X [27% sin(2mx) cos(my) — 3sin(mz)Qy?)
+ p [—6sin(rz)Qy” + 21” sin(2mz) cos(my)
+0.257> sin(ﬂx)Qyﬂ )
In this work, the material constants A and p are taken to be 1 and 0.5, respectively. The
quantity @ € [0, 4] affects the boundary conditions (see Fig. 2) and the body force B. The
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Figure 3: The color contours of displacement vector and stress tensor components in two-
dimensional elastic deformation reconstructed with physics-informed super-resolution frame-
works. Values below the plots indicate the Ly error e. In both the blocks, the LR input
data, HR ground truth data, bicubic interpolation, FSRCNN output, and the RDN output
are plotted from the left to the right.
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characteristic displacement Uy is taken to 1 (maximum value of u, on the top boundary).
The ground truth data is generated by solving the system of equations (1) on a coarse mesh
(shown in Fig. 2) using Finite Element Method for @ regularly sampled at an interval of
0.04. The data is then randomly split in a 80 : 20 ratio for training and test purposes.

The framework super-resolves the deformation fields onto the 128 x 128 mesh, shown
in Fig. 2, which is ~ 400 times finer than the coarse mesh used to obtain the LR data.
The HR outputs for each model are obtained by doing a forward propagation through the
corresponding trained models. For comparison, along with HR labeled data, we also utilize
a simple bicubic interpolation of fields. We note that the HR labeled data is used only for
the comparison with the predicted outputs.

Figure 3 presents the results for the reconstructed displacement and stress fields for 2
different values of () for both the models. We can see that the both the frameworks are able to
super-resolve all the deformation fields with great accuracy as the plots show great agreement
with the reference HR ground truth data. To qualitatively measure the accuracy, we define

. IHR—ILR
a relative error measure as e = HHIHTHQHLQ The values of e are reported underneath the
L

reconstructed fields obtained using the SR frameworks and the bicubic interpolation. As
can be seen, the error is largest for the bicubic interpolated data as compared to both the
physics-informed models. This is expected since the interpolated data may not faithfully
satisfy the governing laws of the system. We also notice that the error is larger for FSRCNN
based model as compared to RDN based model. The reconstructed HR outputs obtained



from the RDN based model almost match the accuracy of an advanced numerical solver
running at 400 times the coarse mesh resolution. We believe that the better accuracy for
the RDN model results from the use of residual connections and smaller kernel sizes during
convolution and upsampling operations in its architecture. This validates the concept that
a deep-learning based physics-informed SR framework can be used to faithfully reconstruct
the fields at a higher resolution while simultaneously satisfying the governing laws. We note
that the proposed physics-informed SR strategy can be easily extended to non-rectangular
domains [GSW20] or account for boundary conditions in a hard manner [RSL21].

6 Conclusion

In summary, we successfully trained and evaluated two physics-informed super-resolution
frameworks based on Residual Dense Network [ZTK*18] and FSRCNN [DLT16] architectures
to super-resolve the deformation fields in a body undergoing elastic deformation. Among the
two deep learning architectures evaluated in this work, we show that the framework based on
RDN is more accurate and matches the accuracy of an advanced numerical solver running at
400 times the coarse mesh resolution (see Figs. 2 and 3). The approach is successfully able
to learn high-resolution spatial variation of displacement and stress fields from their low-
resolution counterparts for the linear elastic case discussed. These advantages are possible
due to the combined effect of two rapidly evolving research areas - Physics informed neural
networks [RPK17, RPK19] and computer vision [VDDP18]. We emphasize that the current
work focuses on the demonstration of feasibility of the concept while the assessment of
potential computational advantages, including the extension to hyperelastic deformation, is
deferred to future research.

The approach exemplifies how machine-learning can be leveraged to conduct such mechan-
ical calculations for materials with complex constitutive response (eg. dislocation mediated
plastic deformation and fracture modeling [AZA20, NN19, NT19, AA20a, YZL"16, Arol9,
KTO08, LNN19, AA20b, BHLV14]) to reduce the computational complexity and accelerate
scientific discovery and engineering design.
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